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Abstract
Scene text image super-resolution (STISR) aims at simultaneously
increasing the resolution and readability of low-resolution scene
text images, thus boosting the performance of the downstream
recognition task. Two factors in scene text images, visual struc-
ture and semantic information, affect the recognition performance
significantly. To mitigate the effects from these factors, this paper
proposes a Prior-Enhanced Attention Network (PEAN). Specifi-
cally, an attention-based modulation module is leveraged to under-
stand scene text images by neatly perceiving the local and global
dependence of images, despite the shape of the text. Meanwhile,
a diffusion-based module is developed to enhance the text prior,
hence offering better guidance for the SR network to generate SR
images with higher semantic accuracy. Additionally, a multi-task
learning paradigm is employed to optimize the network, enabling
the model to generate legible SR images. As a result, PEAN estab-
lishes new SOTA results on the TextZoom benchmark. Experiments
are also conducted to analyze the importance of the enhanced text
prior as a means of improving the performance of the SR network.
Code is available at https://github.com/jdfxzzy/PEAN.

CCS Concepts
• Computing methodologies → Reconstruction.
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1 Introduction
Scene text recognition (STR) focuses on extracting text from images,
which has been widely applied in automatic driving [39], intelli-
gent transportation [1], etc. However, in real-world applications, a
variety of reasons result in captured images being low-resolution
(LR), such as the quality of the lens, motion blur, and shaking when
capturing photos, leading to blurred text in images. To better read
text from such images, researchers formulate the STISR task to
reconstruct missing text details in LR images, as a pre-processing
step for STR.

For scene text images, two crucial factors determine whether
they could be correctly recognized, i.e., visual structure and se-
mantic information [12, 59]. Early attempts at STISR concentrate
on adequately recovering the visual structure of LR scene text
images [11, 53, 62]. Composed of several CNN-BiLSTM layers,
these methods can learn from paired LR-HR images to improve
the resolution and readability of scene text images simultaneously.
However, the performance is limited due to the fact that they ig-
nore the semantic information of scene text images. This factor
has been utilized in recent advancements. These works observe
that semantic information plays an important role in guiding the
restoration of correct visual structure, and propose numerous text
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Figure 1: Comparison between previous text prior-based
STISR methods (row (b, c)) and PEAN. The incorporation of
AMM enables PEAN to restore the visual structure of lengthy
text in images. However, its performance is limited by the
absence of semantic information (row (d)). The introduction
of TP-LR partially addresses this limitation, yet its efficacy
remains inadequate, leading to several failure cases (row (e)).
Considering that TP-HR is a robust alternative, we conduct
an exploratory experiment by substituting TP-HR with TP-
LR, resulting in superior performance (row (f)). This inspires
us to design a module for enhancing the TP-LR so as to ob-
tain the ETP, which demonstrates comparable effectiveness
to TP-HR in guiding the SR process (row (g)).

prior-based methods [16, 29, 30, 63]. That is, the text prior, gener-
ated by pre-trained STR models, is leveraged to facilitate the SR
process [16, 29, 30, 63], thereby generating correct characters of
text in SR images.

Despite improved performance achieved by these approaches,
the dominance of visual structure and semantic information per-
sists, as two critical issues in previous studies remain unresolved.
Firstly, previous STISR methods [3, 4, 30, 53, 63] rely on Sequen-
tial Residual Blocks (SRB) to extract visual features. This module,
containing several CNN-BiLSTM layers, has difficulty in restoring
the complete visual structure of images containing long or deformed
text string due to its inherent demerits, i.e., the performance bottle-
neck of capturing long-range dependence [10, 38]. Secondly, the
introduction of the primary text prior, originating from the interfer-
ence of low-quality images on recognizers, prevents the SR network
from generating images that contain correct semantic information.
Recently, C3-STISR [63] has employed a language model [12] into
STISR, utilizing its learned linguistic knowledge to rectify the text
prior. Although the rectified prior demonstrates some effectiveness,
it lacks sufficient strength in guiding the SR network to produce
images with high semantic accuracy.

We propose a Prior-Enhanced Attention Network (PEAN) to
tackle issues caused by the two factors. To begin with, an Attention-
based Modulation Module (AMM) is proposed to substitute the
SRB, endowing the network with a larger receptive field to images,
thereby restoring the visual structure of images with text in var-
ious shapes and lengths (shown in Figure 1(d)). Horizontal and

vertical strip-wise attention mechanisms [9, 18, 49] are employed
in AMM. Among them, the horizontal attention mechanism can
capture the dependence between characters while the vertical at-
tention mechanism can capture the structural information within a
character [62]. However, the lack of semantic information limits the
capability of such model. As demonstrated by previous works [6, 8],
leveraging strong prior information to restrict the solution space
plays a vital role in SR problems. Notably, the text prior derived
from high-resolution (HR) images is a robust choice for STISR, in
view of the high recognition accuracy of HR images. Consequently,
we conduct an exploratory experiment wherein we substitute the
text prior from LR images (TP-LR) with the text prior from HR
images (TP-HR) within such model, yielding superior outcomes
(see Figures 1(e) and (f) for comparison, details can be found in
§ 4.4.1). This inspires the design of a module for enhancing the
primary text prior, resulting in the creation of the Enhanced Text
Prior (ETP), which is comparable in effectiveness to TP-HR (shown
in Figures 1(f) and (g)). The ETP provides valuable guidance to
the SR network, promoting the generation of SR images with high
semantic accuracy. Given the remarkable performance of diffusion
models [17, 47], we propose a diffusion-based Text Prior Enhance-
ment Module (TPEM) to obtain the ETP owing to their ability to
map complex distributions [57]. In addition, considering that the
goal of STISR is to increase the resolution and readability of LR
scene text images, we adopt the Multi-Task Learning (MTL) para-
digm in the training phase, where the image restoration task aims
at generating high-quality SR images, and the text recognition task
stimulates the model to generate more readable SR results. In a
nutshell, main contributions of our work are three-fold:

• We devise an AMM containing horizontal and vertical at-
tention mechanisms to model the long-range dependence in
scene text images, thereby recovering the visual structure of
images with long or deformed text.

• A diffusion-based TPEM is further proposed to enhance the
primary text prior. The resulting ETP guides the SR network
to generate SR images with improved semantic accuracy.

• Empirical studies show that PEAN attains the SOTA perfor-
mance on the TextZoom [53] benchmark. We also conduct
experiments to explore the reasons behind the performance
improvement of the SR network.

2 Related Work
2.1 Scene Text Image Super-Resolution
Scene text image super-resolution (STISR) has received surging
attention in the computer vision community. Different from the
classic single image super-resolution (SISR) task, STISR aims at in-
creasing the resolution and legibility of scene text images simultane-
ously [69], serving as a pre-processing method for the downstream
recognition task.

The milestone works in STISR are the TextZoom benchmark and
the TSRN model [53], which promote the development of follow-up
approaches. We roughly classify them into two categories. One
category of methods focuses on recovering the visual structure of
LR scene text images. Among them, TSRN [53] and PCAN [62] use
several CNN-BiLSTM blocks to complete the SR process. TSAN [70]
adopts a gradient-based graph attention method to extract more
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Figure 2: Overview of the architecture of our proposed Prior-Enhanced Attention Network (PEAN).

effective representations for STISR. Another category considers the
semantic information as the text prior to guide the SR process. In
this category, TPGSR [29] and TATT [30] utilize the pre-trained
recognizer to generate the text prior from LR images, boosting
the model to generate SR images with correct text. C3-STISR [63]
employs a language model [12] to rectify the text prior and uses
triple clues to realize STISR.

2.2 Scene Text Recognition
Scene text recognition (STR) aims at reading text contents from
natural images. The pioneering work CRNN [43] uses the CNN-
BiLSTM framework and the CTC [15] loss to perform STR for the
first time. ASTER [44] further exploits the Thin-Plate Spline (TPS)
transformation [19] to understand scene text images with deformed
or irregular layouts. The concurrent workMORAN [28] also handles
these cases via a multi-object rectification network.

Recently, language models have been integrated into STRmodels
and the fusion of vision and language features shows a great po-
tential to improve the scene text understanding. SRN [59] employs
an autoregressive language model to rectify the recognition results
generated by visual features. Additionally, ABINet [12] shows that
masked language models [7], capable of providing bidirectional
representations, constitute another effective option for rectification.
Furthermore, PARSeq [2] creatively adopts an internal language
model as a spell-checker, eliminating the need for the pre-training
process in ABINet [12].

2.3 Diffusion Models
In computer vision, diffusion models [17] emerge as robust proba-
bilistic generative models, facilitating tasks like image synthesis [14,
40], text-to-image synthesis [33, 41], image restoration [13, 57] and
image inpainting [68] through the iterative diffusion of information
among pixels. Recently, diffusion models have also been employed
in the super-resolution task. SR3 [42] is the pioneering work that
applies diffusion models to SISR. TextDiff [25] represents the initial
attempt at a diffusion-based model designed specifically for STISR,
focusing on enhancing the visual structure of text within images
by refining their contours for a more natural appearance.

In contrast to existing methods, the proposed PEAN uses the
diffusion-based TPEM to provide the SR network with enhanced

semantic guidance, further resulting in SR images with heightened
semantic accuracy.

3 Methodology
This section first gives an overview of the Prior-Enhanced Atten-
tion Network (PEAN). Then we present the proposed Text Prior
Enhancement Module (TPEM), Attention-based Modulation Mod-
ule (AMM) and the Multi-Task Learning (MTL) paradigm.

3.1 Overall Architecture
The pipeline of our proposed PEAN is shown in Figure 2. Given one
LR image 𝐼 lr ∈ R𝐻×𝑊 ×𝐶 , the Text Prior Generator (TPG) outputs
the recognition probability sequence as the primary text prior 𝑃 l.
Then, the diffusion-based TPEM refines it to obtain the ETP denoted
as 𝑃e, which can assist the SR network to generate SR images with
improved semantic accuracy. Concurrently, a convolutional layer
is adopted to extract the shallow visual feature 𝐹 s from 𝐼 lr, which
is then aligned with the refined text prior by a Feature Alignment
Module (FAM). Then an AMM with 𝑁 blocks is introduced to mine
the internal dependence between characters in the image, thereby
facilitating the SR process. For the 𝑖th block of AMM (i.e., 𝐵𝑖 ), its
output 𝐹o

𝑖
is firstly concatenated with the aligned feature (i.e., 𝐹 a)

in the channel dimension to get 𝐹 c
𝑖+1. The fusion feature is then sent

into 𝐵𝑖+1 for further processing. Finally, a Super-Resolution Module
(SRM) containing several convolutional and batch normalization
layers, receives 𝐹o

𝑁
as input and utilizes a PixelShuffle [45] operation

to generate the SR image 𝐼 sr ∈ R2𝐻×2𝑊 ×𝐶 . Notably, in the training
phase, 𝐹o

𝑁
is also sent into an Auxiliary Recognition Module (ARM),

which outputs the recognition probability sequence of the SR image.
The outputs of TPEM, SRM and ARM enable the optimization of
the model in an Multi-Task Learning (MTL) paradigm, steering the
model to generate plausible and readable SR images.

3.2 Text Prior Enhancement Module
As demonstrated by previous works [6, 8], strong prior information
plays a pivotal role in solving SR problems, while the primary text
prior applied in previous works is not powerful enough because it
originates from LR scene text images. Our exploratory experiments,
detailed in § 4.4.1, also underline the influential role of TP-HR in
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(b) Horizontal and vertical local attention in LAM. “SA” denotes “Strip-wise Attention”. 

(c) Horizontal and vertical global attention in GAM. “SA” denotes “Strip-wise Attention”. 
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Figure 3: Overview of the architecture of the FAM and the strip-wise attention mechanism inside LAM and GAM.

guiding the SR network to generate images with improved semantic
accuracy for the model. Therefore, we introduce the TPEM to obtain
the ETP, which can effectively guide the SR network, similarly to
the efficacy of TP-HR. The core component of TPEM is the denoiser,
denoted as 𝑓𝜃 , which leverages the reverse diffusion process [17]
to estimate the enhanced prior, providing substantial semantic
guidance to the SR network.

3.2.1 Forward Diffusion Process. In the training phase, with a
given HR image, denoted as 𝐼hr ∈ R2𝐻×2𝑊 ×𝐶 , the TPG generates a
sequence of recognition probabilities, referred to as 𝑃h ∈ R𝐿×|A| ,
serving as our ground truth. 𝐿 is the length of the sequence and |A|
is the cardinality of the recognizable letter set. Consequently, in
line with Ho et al. [17], we incrementally introduce Gaussian noise
denoted as 𝜖 to the initial variable 𝑥0 = 𝑃h based on the timestamp,
as follows:

𝑞 (𝑥𝑡 | 𝑥𝑡−1) = N
(
𝑥𝑡 ;

√
𝛼𝑡𝑥𝑡−1, (1 − 𝛼𝑡 ) 𝑰

)
, (1)

Here, 𝛼𝑡 is a hyperparameter that controls the variance of the added
Gaussian noise at each time step. Leveraging the reparameterization
trick [21], we can express 𝑥𝑡 as:

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, 𝜖 ∼ N(0, 𝑰 ), (2)

where 𝛼𝑖 ∈ [0, 1], 𝛼𝑡 =
∏𝑡

𝑖=0 𝛼𝑖 , 𝑡 = 1, 2, · · · ,𝑇 . As 𝑇 → ∞, 𝑥𝑇
converges to an isotropic Gaussian distribution. Consequently, dur-
ing the inference phase, the forward diffusion process simplifies to
initializing 𝑥𝑇 ∼ N(0, 𝑰 ).

3.2.2 Reverse Diffusion Process. In the reverse diffusion pro-
cess, Gaussian noise gradually transforms into the ETP, denoted as
𝑃e ∈ R𝐿×|A| , conditioned on the primary text prior 𝑃 l ∈ R𝐿×|A| .
The latter is the output recognition probability sequence of the
TPG, with 𝐼 lr as input. This process can be formulated as follows:

𝑝𝜃

(
𝑥𝑡−1 | 𝑥𝑡 , 𝑃 l

)
= 𝑞

(
𝑥𝑡−1 | 𝑥𝑡 , 𝑓𝜃

(
𝑥𝑡 , 𝑃

l, 𝑡
))

, (3)

where 𝑓𝜃 is an MLP-based denoising network, the architecture
of which can be found in the Supplementary Material. Similar to
previousworks [25, 57, 58, 64], we opt to directly estimate 𝑃e instead
of 𝜖 for performance improvement. Experiments in § 4.4.1 verifies
the effectiveness of this design. The whole process is supervised by
the MAE and CTC loss [15], given by:

Ldiff = 𝜆1
������𝑃h − 𝑃e

������
1︸       ︷︷       ︸

Lmae

+ 𝜆2Lt
ctc, (4)

where 𝜆1 and 𝜆2 are theweight of the two losses. During the training
phase, this reverse sampling process is a Markov process contain-
ing 𝑇 steps, which is computationally intensive. Therefore, in the
inference phase, we adopt the sampling strategy of DDIM [47] with
𝑆 steps (𝑆 ≪ 𝑇 ) following previous works [68]. Experiments in the
Supplementary Material validate the effectiveness and efficiency of
this design.

Besides, a feature alignment process between the shallow visual
feature and the ETP is required to facilitate the SR process. We
design a Feature Alignment Module (FAM) to obtain the aligned
feature 𝐹 a ∈ R𝐻×𝑊 ×𝐶1 , where 𝐶1 is the dimension of the shallow
visual feature. The architecture of the FAM is shown in Figure 3(a).

3.3 Attention-Based Modulation Module
We design an Attention-based Modulation Module (AMM) to cap-
ture long-range dependence, thereby effectively restoring the visual
structure of images with long or deformed text. As can be seen in
Figure 2, AMM contains 𝑁 blocks, each block (i.e., 𝐵𝑖 ) including a
simple convolutional layer, a Local Attention Module (LAM) and
a Global Attention Module (GAM). For 𝐵𝑖 , it receives the output
of 𝐵𝑖−1, which is then concatenated with 𝐹 a channel-wisely to get
𝐹 c
𝑖
, serving as the input of this block. Since the dimension of 𝐹𝑐

𝑖
is

located in R𝐻×𝑊 ×2𝐶1 , a convolutional layer is adopted to project
it to the same space as 𝐹o

𝑖−1, as:

𝐹 loc
𝑖 = Conv

(
Concat

(
𝐹o
𝑖−1, 𝐹

a) ) ∈ R𝐻×𝑊 ×𝐶1 . (5)

Firstly, a LAM is adopted to model the local similarity between
intra- and inter-character features. Considering that for a scene
text image, the horizontal contexts contain correlation information
between characters while the vertical contexts contain internal fea-
tures inside a character, such as the stroke information [53, 62], we
propose to perform the strip-wise attention mechanism [9, 18, 49]
on the fusion feature to capture long-range dependence. Taking the
horizontal attention as an example. As shown in Figure 3(b), 𝐹 loc

𝑖
is

split into𝑊 strips in the width dimension and the attention mecha-
nism is applied to each of the𝑊 strips. The resulting feature is then
concatenated to form the horizontal feature 𝐹 loc(h)

𝑖
∈ R𝐻×𝑊 ×𝐶1 .

Likewise, the vertical attention mechanism can also result in the
vertical feature 𝐹

loc(v)
𝑖

∈ R𝐻×𝑊 ×𝐶1 . 𝐹 loc(h)
𝑖

and 𝐹
loc(v)
𝑖

are con-
catenated in the channel dimension and a convolutional layer is
used to fuse them. Then the FFN with residual connection is intro-
duced to perform non-linear transformation, given by:

𝐹
glo
𝑖

= 𝐹 loc
𝑖 + Conv

(
Concat

(
𝐹

loc(h)
𝑖

, 𝐹
loc(v)
𝑖

))
, (6)
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𝐹
glo
𝑖

= 𝐹
glo
𝑖

+ FFN
(
𝐹

glo
𝑖

)
∈ R𝐻×𝑊 ×𝐶1 . (7)

However, the interaction between character-level features is
limited in a local manner [67]. To encourage global interaction, we
employ the strip-wise GAM as the complementation of the LAM,
thus further modeling the global similarity between intra- and
inter-character features. Specifically, the width dimension of 𝐹glo

𝑖
is mer-ged with the channel dimension, leading to a feature map
located in R𝐻×𝐶1𝑊 , as can be seen in Figure 3(c). The strip-wise
attention mechanism is imposed on it to capture the global inter-
character dependence, resulting in the feature 𝐹glo(h)

𝑖
∈ R𝐻×𝐶1𝑊 .

Likewise, the height dimension of 𝐹glo
𝑖

is merged with the channel
dimension, and the attention mechanism is applied to this feature
map, leading to the feature 𝐹

glo(v)
𝑖

∈ R𝑊 ×𝐶1𝐻 . With the aid of
them, the horizontal and vertical attention mechanisms can work
globally to promote global-level interaction of character features.
Similar workflow as Eq. (6) and (7) is adopted to get the final feature
of 𝐵𝑖 , namely 𝐹o

𝑖
∈ R𝐻×𝑊 ×𝐶1 .

3.4 Multi-Task Learning
While previous researches [16, 29, 30, 60, 63] adopt the MTL para-
digm by incorporating an additional text prior loss [30] to fine-tune
the TPG for better text priors, our approach differs in the utilization
of the MTL paradigm. We employ this paradigm not only to ensure
image quality but also to facilitate text recognition. This distinction
arises from the fact that STISR aims to simultaneously enhance the
resolution and legibility of scene text images [69].

3.4.1 Image Restoration Task. To begin with, we employ an
image restoration task to generate high-quality SR images. As can
be seen in Figure 3, the output of the last block of AMM, i.e., 𝐹o

𝑁
,

is sent into a Super-Resolution Module (SRM) to get the SR im-
age 𝐼 sr ∈ R2𝐻×2𝑊 ×𝐶 . It uses several convolutional layers with
batch normalization and Mish [32] activation function for feature
refinement and adopts a PixelShuffle [45] operation to increase the
resolution. To ensure the pixel-level and structure-level coherence
between 𝐼 sr and 𝐼hr, the Mean-Square-Error (MSE) loss and the
Stroke-Focused Module (SFM) loss [4] are applied between the two
images, formulated as:

Limg = 𝜆3
������𝐼hr − 𝐼 sr

������2
2︸        ︷︷        ︸

Lmse

+ 𝜆4
������𝐴hr −𝐴sr

������
1︸          ︷︷          ︸

Lsfm

, (8)

where 𝐴 is the attention map fetched from a Transformer-based
recognizer [4]. 𝜆3 and 𝜆4 are the weights of the MSE and SFM loss
respectively.

3.4.2 Text Recognition Task. Considering that high image qual-
ity may not be equal to superior recognition results [16, 25], we
introduce an Auxiliary Recognition Module (ARM), steering the
model to generate SR images with promising legibility. In the infer-
ence phase, this module is abandoned, causing no extra computation
complexity.

We exploit the classic and effective CNN-BiLSTM architecture
applied in the STR task to design the ARM for simplicity [43]. Its
output is a recognition probability sequence on the basis of 𝐹o

𝑁

and we denote it as 𝑃a ∈ R𝐿×|A| , where 𝐿 is the length of the

sequence and |A| is the cardinality of the recognizable letter set.
The CTC [15] loss denoted as La

ctc is imposed between 𝑃a and the
ground truth for better optimization. In a word, the total loss of the
text recognition task is:

Ltxt = 𝜆5La
ctc, (9)

where 𝜆5 is the weight of the CTC [15] loss for the text recognition
task. In the training phase, we optimize the parameters of PEAN.
The total loss is:

L = Ldiff + Limg + Ltxt . (10)

4 Experiments
In this section, we first introduce the datasets and evaluation met-
rics. Then the implementation details are thoroughly described.
Subsequently, comprehensive experiments are conducted to demon-
strate that our proposed PEAN is an effective alternative for STISR.

4.1 Datasets and Evaluation Metrics
We conduct experiments on the TextZoom [53] benchmark. How-
ever, due to some inherent drawbacks of it, these experiments
are not enough to reflect that PEAN surely has the ability to re-
store the complete visual structure. Therefore, we select 651 im-
ages with the resolution no greater than 16 × 64 as LR images
from the IIIT5K [31], SVTP [37] and IC15 [20] datasets for evalu-
ation. Details of the datasets and drawbacks of TextZoom can be
found in the Supplementary Material. For TextZoom, following
previous works [3, 4, 16, 29, 30, 53, 60, 63], we adopt ASTER [44],
MORAN [28] and CRNN [43] for evaluation. In the Supplementary
Material, we also adopt three recent Transformer-based recogniz-
ers, namely, MGP-STR [52], ABINet [12] and VisionLAN [55] for
evaluation. For the constructed dataset, PSNR and SSIM [56] are
selected as metrics to evaluate the image quality.

4.2 Implementation Details
Our model is implemented with the Pytorch 1.10 deep learning
library [36]. All of the experiments are conducted on 1 NVIDIA
TITAN RTX GPU. In the training phase, the model is trained for 200
epochs and optimized by the AdamW [27] optimizer. The learning
rate and the size of the mini-batch are set as 0.001 and 32 respec-
tively. The weight of each loss is set as 𝜆1 = 1, 𝜆2 = 1, 𝜆3 = 0.8,
𝜆4 = 75, 𝜆5 = 1. In terms of the network architecture, the num-
ber of blocks in AMM is 6. The sampling timestep in the TPEM
is set as 1. Following CRNN [43], the number of convolutional
layers applied in the ARM is 6. We first drop the TPEM and pre-
train the model with TP-HR, then the TPEM is introduced and
weights of parameters obtained by pre-training are initialized to
continue the fine-tuning process of the model. Of note, if this set-
ting is abandoned, PEAN can still achieve SOTA performance on
the TextZoom [53] dataset. Ablation studies about the weight of
loss functions and the pre-training and fine-tuning setting can be
found in the Supplementary Material. In the main paper, we study
our method on top of PARSeq [2] as the TPG. In the Supplementary
Material, we also study the cases when CRNN [43] and ABINet [12]
are adopted as the TPG.
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Table 1: The recognition accuracy of some mainstream STISR methods on the three subsets of TextZoom. Best scores are bold.

Methods Accuracy of ASTER [44] (%) Accuracy of MORAN [28] (%) Accuracy of CRNN [43] (%)
Easy Medium Hard Average Easy Medium Hard Average Easy Medium Hard Average

LR 62.4 42.7 31.6 46.6 59.4 36.0 28.2 42.3 37.5 21.2 21.4 27.3
SRCNN [8] 69.4 43.4 32.2 49.5 63.2 39.0 30.2 45.3 38.7 21.6 20.9 27.7

SRResNet [24] 69.6 47.6 34.3 51.3 60.7 42.9 32.6 46.3 39.7 27.6 22.7 30.6
RDN [61] 70.0 47.0 34.0 51.5 61.7 42.0 31.6 46.1 41.6 24.4 23.5 30.5
RRDB [54] 70.9 44.4 32.5 50.6 63.9 41.0 30.8 46.3 40.6 22.1 21.9 28.9
LapSRN [23] 71.5 48.6 35.2 53.0 64.6 44.9 32.2 48.3 46.1 27.9 23.6 33.3
ESRT [8] 69.8 49.1 35.2 52.5 61.9 41.7 32.2 46.3 48.2 27.9 25.8 34.8

Omni-SR [51] 71.2 52.3 38.1 54.9 66.7 47.9 36.5 51.4 54.8 37.4 29.4 41.4
SRFormer [66] 69.0 45.1 32.8 50.2 61.3 39.6 29.9 44.7 41.0 22.8 22.9 29.6
TSRN [53] 75.1 56.3 40.1 58.3 70.1 53.3 37.9 54.8 52.5 38.2 31.4 41.4
TBSRN [3] 75.7 59.9 41.6 60.1 74.1 57.0 40.8 58.4 59.6 47.1 35.3 48.1
PCAN [62] 77.5 60.7 43.1 61.5 73.7 57.6 41.0 58.5 59.6 45.4 34.8 47.4
TG [4] 77.9 60.2 42.4 61.3 75.8 57.8 41.4 59.4 61.2 47.6 35.5 48.9

SGENet [48] 75.8 60.7 45.0 61.4 71.5 56.2 41.4 57.3 59.4 47.9 37.7 49.0
TPGSR [29] 78.9 62.7 44.5 62.8 74.9 60.5 44.1 60.5 63.1 52.0 38.6 51.8
TATT [30] 78.9 63.4 45.4 63.6 72.5 60.2 43.1 59.5 62.6 53.4 39.8 52.6

C3-STISR [63] 79.1 63.3 46.8 64.1 74.2 61.0 43.2 60.5 65.2 53.6 39.8 53.7
TATT + DPMN [69] 79.3 64.1 45.2 63.9 73.3 61.5 43.9 60.4 64.4 54.2 39.2 53.4

TSAN [70] 79.6 64.1 45.3 64.1 78.4 61.3 45.1 62.7 64.6 53.3 38.8 53.0
TEAN [46] 80.4 64.5 45.6 64.6 76.8 60.8 43.4 61.4 63.7 52.5 38.1 52.2
MSPIE [71] 80.4 63.4 46.3 64.4 74.0 61.4 44.4 60.8 64.5 54.2 39.6 53.5
TCDM [34] 81.3 65.1 50.1 65.5 77.6 62.9 45.9 62.2 67.3 57.3 42.7 55.7
LEMMA [16] 81.1 66.3 47.4 66.0 77.7 64.4 44.6 63.2 67.1 58.8 40.6 56.3
RTSRN [60] 80.4 66.1 49.1 66.2 77.1 63.3 46.5 63.2 67.0 59.2 42.6 57.0
RGDiffSR [65] 81.1 65.4 49.1 66.2 78.6 62.1 45.4 63.1 67.6 56.5 42.7 56.4
TextDiff [25] 80.8 66.5 48.7 66.4 77.7 62.5 44.6 62.7 64.8 55.4 39.9 54.2

PEAN 84.5 71.4 52.9 70.6 79.4 67.0 49.1 66.1 68.9 60.2 45.9 59.0
HR 94.2 87.7 76.2 86.6 91.2 85.3 74.2 84.1 76.4 75.1 64.6 72.4

Figure 4: Statistics on the performance of different text prior-
based models with publicly available weights on images con-
taining text of different lengths.

4.3 Comparing with State-of-the-Art Methods
We evaluate our proposed PEAN on the TextZoom benchmark [53]
and compare its performance with several typical STISR methods.
The results are presented in Table 1. It is evident that our proposed
PEAN achieves new SOTA performance with significant improve-
ments. For instance, when considering the recognition accuracy
of ASTER [44], our model shows an average improvement of +4.2

compared with the existing SOTA model, namely, TextDiff [25].
Furthermore, we provide statistics on the performance of different
text prior-based models [16, 30, 63] on images containing text of
different lengths. For a fair comparison, all selected models use
publicly available weights. As illustrated in Figure 4, PEAN outper-
forms other models across nearly every text length. It is particularly
superior to previous works with images containing lengthy text,
establishing itself as the first model capable of processing images
containing text with up to 15 letters.

In addition, we provide some visualizations of samples from
TextZoom recovered by several representative STISR models, as
shown in Figure 5. With the assistance of the ETP, PEAN is able to
generate SR images with improved semantic accuracy compared
with previous text prior-based methods [16, 30, 63]. Although early
methods such as TSRN [53] can generate SR images with correct
semantic information for words like “cooking”, it is obvious that
the visual structure of the text in images is disastrous.

Additionally, we perform experiments on the dataset we built
without retraining the models. Improved performance on PSNR and
SSIM in Table 2 shows that compared with previous representative
STISR methods, PEAN is better at recovering the visual structure
of the text in images.
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Figure 5: Visualization of SR images and their recognition results by ASTER. Red characters indicate wrong recognition results.

Table 2: The performance of representative STISR models on
the dataset we built.

Methods PSNR SSIM
TSRN [53] 21.48 0.7743
TBSRN [3] 23.01 0.7967
TG [4] 21.84 0.7116

TATT [30] 23.31 0.8012
C3-STISR [63] 21.03 0.7602
LEMMA [16] 22.09 0.7549

PEAN 24.24 0.8021

4.4 Ablation Study
Here we conduct ablation studies to demonstrate the effectiveness
of components in our model. All the experiments are conducted on
TextZoom and we report the recognition accuracy of ASTER [44].

4.4.1 Text Prior and the Enhancement Module. We conduct
experiments to verify the importance of incorporating the text prior
and the enhancement module into our model. The results shown in
Table 3 justify that the introduction of the text prior can improve
the performance of the SR process. However, this primary text
prior from LR images is not robust enough to guide the SR network
to generate SR images with high semantic accuracy. Considering
that TP-HR can serve as a powerful alternative for guidance, we
conduct an exploratory experiment wherein we substitute TP-LR

with TP-HR. Results shown in the last row of the table demonstrate
that leveraging the powerful prior information from HR images
can significantly boost the performance of text prior-based STISR
methods. This observationmotivates us to design amodule aimed at
enhancing the primary text prior from LR images, thereby providing
further guidance to the SR network for generating images with high
semantic accuracy. Results displayed in the table indicate that our
proposed TPEM is able to produce the ETP, which significantly
improves the performance over the model with TP-LR among all
subsets by +6.8 on average.

Table 3: Analysis of the impact of the text prior and the TPEM.
The last row shows the results of the exploratory experiment
as illustrated in Figure 1(f).

TP-LR TPEM TP-HR Easy Medium Hard Average
75.7 60.2 42.1 60.4

✓ 79.7 62.3 46.1 63.8
✓ ✓ 84.5 71.4 52.9 70.6

✓ 88.4 75.5 61.3 75.9

4.4.2 Impact of the AMM. Here we perform experiments to
justify the superiority of the AMM adopted in our model. As pre-
sented in Table 4, the comparison reveals the following points: (1)
Our proposed AMM handles the STISR task in a more effective
way than the CNN-BiLSTM-based SRB [53]. The local inductive
bias of the CNN [10, 38] and the rigid nature of BiLSTM [50, 69]
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limit its performance in recovering the visual structure of images
with long or deformed text [3, 30], while the AMM can solve this
problem. (2) The typical ViT-based architectures [9, 10, 26] show
trivial performance, as a result of the tendentious design for high-
level vision tasks, which neglects the inherent characteristic of
STISR. (3) Although employing the strip-wise attention mechanism,
Stripformer [49], which also leverages the conditional positional
encodings [5] and several residual blocks for the image deblur-
ring task, fails in the STISR task. On average, PEAN obtains an
improvement of the performance of +5.9 from the AMM. Further
experiments in the Supplementary Material show that even without
the MTL paradigm, the AMM still outperforms the SRB [53].

Table 4: Ablation study on the impact of the AMM.

Methods Easy Medium Hard Average
SRB [53] 80.1 64.4 46.4 64.7
ViT [10] 81.8 65.7 49.5 66.7
Swin [26] 73.8 55.1 39.0 57.1
CSWin [9] 70.2 52.9 37.2 54.5

Stripformer [49] 72.9 53.6 37.3 55.7
AMM 84.5 71.4 52.9 70.6

4.4.3 Effect of the MTL Paradigm. In this part, we conduct
experiments to show the effect of the MTL paradigm introduced in
our work. The results shown in Table 5 indicate that: (1) The stroke-
based SFM loss [4] provides an average contribution of +4.6 for the
improved performance, which convinces us that the preservation of
visual structure plays a vital role in STISR. (2) The text recognition
task employed in our work is also indispensable. The CTC [15]
loss applied on the output of ARM (La

ctc) brings correct semantic
constraint for the AMM. Besides, the CTC loss imposed on the
ETP (Lt

ctc) ensures the coherence between the text prior and the
ground truth text label, guiding the training of the enhancement
module in a precise way. We provide more detailed experiments in
the Supplementary Material.

Table 5: Ablation study on the effect of MTL.

Loss Functions Easy Medium Hard Average
Lmse 76.2 58.8 41.5 59.9
+Lsfm 79.2 64.3 47.0 64.5
+Lmae 79.6 65.1 47.1 64.9
+Lt

ctc 81.4 68.8 50.7 67.9
+La

ctc 84.5 71.4 52.9 70.6

4.5 Representation Analysis
In this section, we delve into the reasons about the ability of the ETP
that guides the SR network in generating images with improved
semantic accuracy. In Table 3, we observe superior performance
for PEAN with TP-HR, while PEAN with TP-LR exhibits poorer
results compared to PEAN with ETP, as demonstrated in Table 3.
To further investigate these observations, following the common
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Figure 6: Results of representation comparison by CKA [22].

analysis setting on Vision Transformers [35, 38], we employ the
linear centered kernel alignment (CKA) [22] to assess the similarity
of representations among these three models.

As depicted in Figure 2, the introduction of the text prior influ-
ences the representations of the AMMand SRMduring the inference
phase. Therefore, we focus on comparing the representational sim-
ilarity of the layers in these two modules. We categorize the 22
layers into two groups for analysis: layers of AMM (0th∼11th layer)
and layers of SRM (12th∼21st layer). As shown in the diagonal sec-
tion of Figure 6, distinct differences in representations are evident
across all layers of AMM when comparing PEAN (w/ ETP) and
PEAN (w/ TP-LR). Conversely, a consistently high similarity is ob-
served between PEAN (w/ ETP) and PEAN (w/ TP-HR). Regarding
the layers of SRM, variations in representational similarity mainly
exists in the shallow layers (12th∼14th layer).

Consequently, we can conclude that the power of the ETP lies
in its ability to make the representations learned by AMM and SRM
more similar to those learned by the corresponding modules in PEAN
(w/ TP-HR), which is known for its superior performance. This study
further justifies that the combination of our proposed TPEM and
AMM brings out powerful capabilities.

5 Conclusion
In this paper, we propose a Prior-Enhanced Attention Network
(PEAN) for scene text image super-resolution (STISR). Specifically,
we design a Text Prior Enhancement Module (TPEM) to provide
the ETP for the subsequent SR process, enabling SR images to
contain accurate semantic information. Moreover, an Attention-
based Modulation Module (AMM) is devised to obtain local and
global coherence in scene text images, which can recover the visual
structure of images with text in various sizes and deformations.
Additionally, we introduce theMulti-Task Learning (MTL) paradigm
to improve the legibility of LR images. Experiments demonstrate
that our proposed PEAN achieves SOTA performance through the
interaction of these designs. We believe our work will serve as a
strong baseline for future works, and will push forward the research
of STISR as well as other sub-fields of scene text images.
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